GRCs SGuncle
USN

Fyar, Man

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Network Analysis

Time: 3 hrs .
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Reduce the circuit shown in Fig.Q1(a) into single voltage source with series resistance between terminals A and B.

Fig.Q1(a)
(06 Marks)
b. Using Mesh analysis, find the current I_{1} for the circuit shown in Fig.Q1(b).

Fig.Q1(b)
(06 Marks)
c. Explain the concept of Super node.

2 a. Determine the resistance between terminals A and B of the circuit shown in Fig.Q2(a) using Star to Delta conversion.

Fig.Q2(a)
(06 Marks)
b. Using Nodal analysis, find the value of V_{x} in the circuit shown in Fig.Q2(b), such that the current through $(2+\mathrm{j} 3) \Omega$. Impedance is zero.

Fig.Q2(b)
(06 Marks)
c. Explain the Dependent sources.

Module-2

3 a. For the circuit shown in Fig.Q3(a), find the current through 20Ω resistor using super position theorem.

Fig.Q3(a)
(08 Marks)
b. For ac circuits, prove that the maximum power deliver to load is $\frac{\left(V_{t h}\right)^{2}}{8 R_{t h}}$, where $\mathrm{V}_{\text {th }}-$ Thevenin's equivalent voltage and $\mathrm{R}_{\text {th }}$ - Thevenins equivalent resistance.
(08 Marks)

OR

4 a. State the Millman's theorem. Using Millman's theorem, determine the current through $(2+\mathrm{j} 2) \Omega$ impedance for the network shown in Fig.Q4(a).

Fig.Q4(a)
(08 Marks)
b. State the Thevinin's Theorem and obtain the Thevinin's equivalent circuit for the circuit shown in Fig.Q4(b).

Module-3
5 a. Explain the behavior of a inductor and capacitor under switching conditions in detail.
(08 Marks)
b. The switch is changed from position to position 2 at $t=0$. Steady State condition have been reached in position 1. Find the value $\mathrm{i}, \frac{\mathrm{di}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$for the circuit shown in Fig.Q5(b).

Fig.Q5(b)
OR
6 a. Find the Laplace of $f(t)$ shown in Fig.Q6(a).

Fig.Q6(a)
(08 Marks)
b. Find the impulse response of the circuit shown in Fig.Q6(b). Assuming that all initial conditions to be zero.

Fig.Q6(b)
(08 Marks)

Module-4

a. Derive the expression for frequency at which voltage across the capacitor is maximum of a series resonance circuit.
(08 Marks)
b. Show that the circuit shown in Fig.Q7(b) can have more than one resonant condition.

Fig.Q7(b)
(08 Marks)

OR

8 a. Determine the parallel resonance circuit parameters whose response curve is shown in Fig.Q8(a). What are the new values of W_{r} and bond width if ' c ' is increased 4 times?

b. Prove that the bandwidth of a series resonance circuit $f_{2}-f_{1}=\frac{R}{2 \pi L}$.

Module-5

9 a. Express the z-parameters in terms of Y-parameter.
(08 Marks)
b. For the network shown in Fig.Q9(b), find the transmission parameters.

(08 Marks)

10 a. Express the h-parameter in terms of Z-parameters.
(08 Marks)
b. Find the z-parameter for the two-port network shown in Fig.Q10(b).

